Chapter 3 Lecture 12: Diluted Magnetic Semiconductors

Outline

- Introduction to Spintronics
- Introduction to DMS
- Subsurfactant Epitaxy of DMS Materials
- Non-Compensated n-p Codoping of DMS Materials

SPINTRONICS WORLD

Spin-polarized device principles (metallic layers):

Parallel magnetic layers $\Rightarrow \downarrow$ spins can flow

Antiparallel magnetic layers $\Rightarrow \downarrow$ spins cannot flow

[Prinz, Science 282, 1660 (1998)]

FERROMAGNETIC METALS

Spin injection into a FM semiconductor heterostructure

Spin transfer

Ohno et al., Nature 402, 790 (1999) Malajovich et al., Nature 2001

Dream Technology Integration

Silicon era

Injection of spin-polarized carriers plays important role in device applications:

- Combination of semiconductor technology with magnetism gives rise to new devices;
- Long spin-coherence times
 (~ 100 ns) have been
 observed in semiconductors

Magnetism and GMR

Semiconductor spintronics

- smaller
- faster
- low power
- non-volatile
- multi-functionality

Outline

- Introduction to Spintronics
- Introduction to DMS
- Subsurfactant Epitaxy of DMS Materials
- Non-Compensated n-p Codoping of DMS Materials

Making semiconductor magnetic: Doping

Magnetic ion: Mn

Hund rule: Distributing *n* electrons over 2(2l+1) degenerate atomic orbitals, the lowest energy state is the state that maximize the total spin angular momentum *S*

Mn: *l*=2, *n*=5 -> S=5/2

Magnetic Semiconductors

• Early 60's: EuO and CdCr₂S₄

 \Rightarrow very hard to grow

• Mid-80's: Diluted Magnetic Semiconductors

- II-VI (e.g., CdTe and ZnS) $II \rightarrow Mn$
- \Rightarrow difficult to dope
- \Rightarrow direct Mn-Mn AFM exchange interaction
 - PM, AFM, or SG (spin glass) behavior
- \Rightarrow present-day techniques: doping has led to FM for T < 2K

IV-VI (e.g., PbSnTe) IV \rightarrow Mn

 \Rightarrow hard to prepare (bulk and heterostructures), but helped understand the mechanism of carrier-mediated FM

• Late 80's: MBE → uniform (In,Mn)As films on GaAs substrates: FM on p-type.

- Late 90's: MBE → uniform (Ga,Mn)As films on GaAs substrates: FM; heterostructures
- 2000~ ZnO:X, GaN:X, TiO2: X (X=TM, RE), CdMnGeP2, ZnCrTe Searching ferromagnetism with high Tc.

II-VI Diluted Magnetic Semiconducotors

III-V Diluted Magnetic Semiconducotors

(Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb

Mn-doped GaAs

Mn-doped GaAs

Resistance measurements on samples with different Mn concentrations:

Metal
$$\rightarrow R \downarrow$$
 as $T \uparrow$
Insulator $\rightarrow R \uparrow$ as $T \uparrow$
Reentrant MIT

[Ohno, JMMM 200, 110(1999)]

Transport of (Ga,Mn)As

 $R_{\text{Hall}} = (R_0/d)B + (R_{\text{S}}/d)M_{\perp}$

Silicon-Compatible DMS

A Group-IV Ferromagnetic Semiconductor: Mn_xGe_{1-x}

Y. D. Park,* A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson,† T. F. Ambrose,‡ A. Wilson,§ G. Spanos, B. T. Jonker∥

Naval Research Laboratory, Washington, DC

SCIENCE VOL 295 25 JANUARY 2002

Predicted Curie Temperatures

Dietl et al., Science, (2000)

Primary Challenge: Increase T_C to Room Temperature or Higher

Generic guides:

"...any strategy that increases the hole density near Mn ions will increase Tc…"

See: MacDonald, et al. Rev. Modern Phys. (2006)

"…more substitutional, less interstitials…"

See: C.Timm, J. Phys. Condens. Matter 15, R1865(2003)

Two New Recipes to Increase Substitutional Mn Doping in Ge

A. Subsurfactant Epitaxy

Prediction:

Wenguang Zhu, H. H. Weitering, E. G. Wang, E. Kaxiras, Z. Zhang, Phys. Rev. Lett. 93, 126102 (2004). A detailed presentation of the theory see: Hua Chen, Wenguang Zhu, E. Kaxiras, Z. Zhang, PRB (2009)

Confirmation with a pleasant surprise:

Changgan Zeng, Z. Zhang, K von Benthem, M. F. Chisholm, H. H. Weitering, Phys. Rev. Lett. (2008)

B. Aided by Conventional Electronic Dopants (non-compensated n-p codoping)

Wenguang Zhu, Z. Zhang, E. Kaxiras, PRL (2008) & more

Sequential Multiscale Theoretical Approaches

Calculations of activation barriers within DFT:

- Vienna *ab initio* simulation package (VASP) Hafner, et al., '94-96.
- "Climbing Image Nudged Elastic Band" (NEB) Jonsson et al., '98-00.

Kinetic Monte Carlo simulations of growth:

 Physically realistic growth conditions Voter, '86 Metiu, Lu, & Zhang, '92.

Continuum: classical nucleation theory & elasticity

Philosophy:

Structural control at nonmagnetic level, hoping for optimal magnetic properties as emergent phenomena

Outline

- Introduction to Spintronics
- Introduction to DMS
- Subsurfactant Epitaxy of DMS Materials
- Non-Compensated n-p Codoping of DMS Materials

Subsurfactant Epitaxy: Collaborators

Theory

Dr. Wenguang Zhu ICQS/ORNL Harvard UT

> Hua Chen UT

Prof. Tim Kaxiras Harvard

Prof. Enge Wang

Experiment

Dr. Changgan Zeng UT

Prof. Hanno Weitering UT/ORNL

Dr. Klaus van Benthem Dr. Matthew Chrisholm ORNL

Mn/Ge(100)-2x1: Growth Front Energetics and Kinetics

DFT-GGA calculations
 spin polarized

Subsurface segregation of Mn on Ge(100)-2x1

Surfactants vs. Subsurfactants

Trapping: bad

Trapping: good!!!

Doping via Subsurfactant Epitaxy?

Notable Results on the Theory Side

• On Ge(100), Mn prefers I_0 to substitutional sites, in contrast to bulk Ge, where substitutional sites are preferred.

• The strong preference of I_0 by Mn is due to local stress associated with Ge-Ge dimerization, whose removal by hydrogen passivation destablizes the I_0 sites.

■ A very different picture on Mn/Ge(111): Mn can easily penetrate into the subsurface sites, then diffuse further inward to become interstitials in the bulk. Zeng,Zhu, Erwin, Zhang, Weitering, PRB 70, 205340 (2004).

Experimental Confirmation: Strong preference of Subsurface Sites

Low T: Scattered

RT: Clustered

Experimental Confirmation: Floating and doping

Key Discovery beyond Theoretical Expectation:

A sweet treat from Mother Nature:

T_c>400K at 0.23% Mn!!!

Transport Properties •Anomalous Hall Effect (AHE)

•Insulator-Metal-Insulator (IMI) Transitions

Notable Results on the Experiment Side

Cross checked for unintentional contaminates of every other magnetic element by SIMS, all too low.

■ The 0.25% Mn concentration is at or below the ion channeling resolution limit --- A definitive proof of the substitutional doping nature of Mn is still yet to be achieved.

■ No subsurfactant epitaxy observed on Ge(111) Zeng, Zhu, Erwin, Zhang, Weitering, PRB 2004.

Summary on Subsurfactancy

A novel growth mode, Subsurfactant Epitaxy, has been proposed theoretically and confirmed experimentally.

• Most surprisingly, it offered an optimal way to dope the right amount of Mn into (presumably) the right sites inside Ge, resulting in a striking increase of $T_c>400$ K at the nominal dopant levels of ~0.23%!

• Subsurfactant Epitaxy should be applicable to other related systems requiring doping levels beyond the thermodynamic solubility limits.

Challenging Open Questions

Why constant (0.23%) ? kinetic solubility?

see: Zhang, S.B. & Wei, S.H. PRL 86, 1789 (2001).

■ Why so low (0.23%), yet so good (T_c>400K) ?

Outline

- Introduction to Spintronics
- Introduction to DMS
- Subsurfactant Epitaxy of DMS Materials
- Non-Compensated n-p Codoping of DMS Materials

B. Aided by Conventional Electronic Dopants

Prediction: Wenguang Zhu, ZZ, E. Kaxiras, PRL (2008)

Also: from DMS to DMO

Preference of Mn in Bulk Si and Ge

- In bulk Si, Mn prefers interstitial sites by 0.58 eV.
- In bulk Ge, Mn prefers substitutional sites by 0.63 eV, but has to overcome an energy barrier of 1.06 eV to replace a host Ge atom.

Conjecture: Can An e-Dopant Help?

The assistance of n-type or p-type dopants in the bulk structures might make it easier for the Mn atoms to be incorporated into substitutional sites.

n

Direct Place Exchange?

Si		Ge		
Dopant	E _b -E _a	Dopant	E _b -E _a	ε _{a→b}
Si	2.03	Ge	0.82	
Р	1.46	Р	0.33	0.88
As	1.55	As	0.42	0.98
Sb	2.48	Sb	1.42	
Al	1.24	AI	0.94	
Ga	1.79	Ga	1.05	

Energy Profile

(Unit in eV)

Is the Final State Stable or not?

Dopant Can Not Easily Diffuse Away

First try fails !

Mn Substitutional Dopping Aided by n

An e-dopant still occupies a substitutional site, while a neighboring interstitial Mn atom exchanges with a host semiconducting atom.

Energy Profile

Si		Ge			
Dopant	E _b -E _a	Dopant	E _b -E _a	ε _{a→b}	
Si	2.03	Ge	0.82		
Р	0.89	Р	0.03	0.34	
As	1.09	As	0.05	0.25	
Sb	1.27	Sb	0.22	0.38	
AI	2.05	AI	1.54		
Ga	2.43	Ga	1.52		

Formation Energy of a Mn/e-dopant Substitutional Pair

	Relative formation energy: (E _b +µ _{host}) - E _a					
	Р	As	Sb	Undoped		
Si	-0.84	-0.87	-0.81	+0.58		
Ge	-1.35	-1.42	-1.42	-0.63		

(Unit in eV)

Strongly Anisotropy in Magnetic Coupling Between two Mn/e-dopant Pairs

Strongly Anisotropy in Magnetic Coupling Between two Mn/e-dopant Pairs

Mn-Mn distance (Å)

Some Questions and Ongoing Efforts

• Even for Mn doped into Ge, Mn-Mn coupling along a given direction is non-oscillatory.

See: Zhao, Shishidou, Freeman, PRL 2003. Hamadevan, Sarma, Zunger, PRL 2004.

Mn: double or triple acceptor; e-dopant: single acceptor. Reason for surviving magnetic coupling?

■ VASP: Ge is metallic. LDA+U? GW?

From structures to transport? Hong Guo

Summary on non-compensated p-n codoping

- A novel kinetic process is proposed to incorporate Mn into the host lattice of bulk Ge with the assistance of an adjacent conventional n-type electronic dopant.
- The Mn/e-dopant substitutional pair is thermodynamically favorable in both Si and Ge.
- Two Mn/e-dopant pairs always favors ferromagnetic couping in Ge and Si except at the nearest Mn-Mn distance.
- The magnetic coupling between two Mn/e-dopant pairs exhibits strong anisotropy at some distances in both Si and Ge.

Looking Forward

• Will the favoring of FM order and the enhanced magnetic anisotropy translate into higher Tc?

Experimental confirmations (perhaps back to co-deposition by MBE)?

Any connection between the two parts (especially the magnetic properties)?

Monte Carlo study of the Curie temperature of Mn/As co-doped Ge

Ref: H. Chen, W. G. Zhu, E. Kaxiras, and ZZ, PRB 79, 235203 (2009)

Model Hamiltonian: Classical Heisenberg Model

$$H = -\sum_{i\neq j} J_{ij} \mathbf{e}_i \cdot \mathbf{e}_j$$

Curie temperature: A Two-Step Approach

- 1. Exchange interaction constants are determined from supercell *ab initio* calculations.
- 2. Curie temperature is determined by Monte Carlo simulation, using the interaction parameters calculated in 1.

Determine Interaction Parameters

 Total energy difference between AFM and FM states versus Mn-Mn separation at 3.13% Mn concentration in bulk Ge with only two Mn impurities (diamonds),or with two Mn/As pairs (empty circles)

Mn-Mn distance (Å)

Curie temperature

Metropolis algorithm

4th-order cumulant crossing method to determine T_c

Binder and D. W. Heermann, *Monte Carlo Simulation in Statistical physics* (Springer, Berlin, 2002).

Curie temperature (contd.)

Metropolis algorithm:

- 1.Choose one spin *i* randomly
- 2.Generate a random final spin direction of *i*.
- 3.Calculate total energy change ΔE after flipping the spin. If $\Delta E < 0$, flip the spin, otherwise do the flipping with a probability: ΔE

$$p = e^{-\frac{\Delta E}{k_B T}}$$

Go to step 1

Curie temperature (contd.)

 Ideally, below T_c, U₄ is strictly equal to 2/3, and above T_c, U₄ decays as T⁻¹.

$$U_4 = 1 - \frac{\left\langle M^4 \right\rangle}{3 \left\langle M^2 \right\rangle^2}$$

 T_c can be determined by the crossing of U₄ (T) curves of different supercell sizes.

Tc from MC: linear with concentration

- 1. Coupling parameters by us do not depend on concentration
- 2. 3% is still higher than the percolation threshold of this system.

Spin-glass behavior of MnGe

Correlation function at T=0.01K

A similar cumulant crossing approach yield a spin-glass phase transition temperature of ~5K for 5% Mn

Mn-Mn distance (Å)

Concluding Remarks

- Mn in pure Ge: spin glass, very low Tc.
- Non-compensated n-p (Mn-As) codoping: high Tc.
- It is still possible to get homogeneous high-Tc DMS in Mn_xGe_{1-x}.